Alan Tupaj	Integration as Area
Vista Murrieta High School	AP Readiness Session 6 - February
Website: www.vmhs.net	
(Click on "Teachers" then "Alan Tupaj")	Answers to examples posted on my website
General Problem Steps	<u>Examples</u>
 Given the graph of a function, find the area under the function over a given interval. (same as the definite integral of the function over the interval) (must be linear or circular to use geometry) Divide up the given interval into geometric shapes Area below the x-axis is considered negative If limits of integration are left to right (low to high), then each area changes sign If evaluating a function defined as the integral of the given function from x to a, then you must add the initial condition given at F(a) 	f(x) (-6, 1) (-6, 1) (-6, 1) (-6, 1) (-6, 2) (-4, 0) (-4, 0) (-4, 0) (-4, 0) (-4, 0) (-2) (-2) (-7, 0) (-7, 0) (-7, 0) (-7, 0) (-7, 0) (-9, 0) (-7, 0) (-
Given a function, find the area under the graph over a given interval	7. Find the area under the curve $f(x) = -x^2 + 6x - 3$ on the interval (1, 2).
• Evaluate the definite integral of the function over the interval.	Area = $\int_{1}^{2} (-x^{2} + 6x - 3)dx = \left(\frac{-x^{3}}{3} + \frac{6x^{2}}{2} - 3x\right)_{1}^{2}$ = $\left(\frac{-(2)^{3}}{3} + \frac{6(2)^{2}}{2} - 3(2)\right) - \left(\frac{-(1)^{3}}{3} + \frac{6(1)^{2}}{2} - 3(1)\right)$ = $\left(\frac{-8}{3} + 12 - 6\right) - \left(\frac{-1}{3} + 3 - 3\right) = \frac{-8}{3} + 6 + \frac{1}{3} = \frac{11}{3}$
Given a region defined by two functions, f(x) and $g(x)$, find the area of the region.	8. Find the area enclosed by $f(x) = 5 - x^2$ and $g(x) = x - 7$ Find points of intersection: $5 - x^2 = x - 7$
• If $f(x) \ge g(x)$, then Area = $\int_{a}^{b} (f(x) - g(x))dx$	$x^{2} + x - 12 = 0$, $(x + 4)(x - 3) = 0$, $x = -4,3$ Since $5 - x^{2} \ge x - 7$ on $(-4,3)$ the area is equal to
 If the interval from b to a is not given, then b and a are the points of intersection of f(x) and g(x) Find points of intersection by setting f(x) = g(x) and solving for x 	$\int_{-4}^{3} ((5-x^2) - (x-7))dx = 57.167$

Given a region defined by two functions, f(x) and $g(x)$, with more than two points of intersection, find the area of the region. • Find points of intersection by setting f(x) = g(x) and solving for x • Determine which function is greater over each interval • Split into two integrals $A = \int_{c}^{b} (f(x) - g(x))dx + \int_{a}^{c} (g(x) - f(x))dx$ Where a, b , and c are points of intersection, c is between a and b , $f(x) \ge g(x)$ between b and c , and $g(x) \ge f(x)$	9. Find but do not evaluate an integral to represent the area enclosed by $f(x) = x^3 - 2x^2$ and $g(x) = 2x^2 - 3x$ Find points of intersection: $x^3 - 2x^2 = 2x^2 - 3x$ $x^3 - 4x^2 + 3x = 0$, $x(x-3)(x-1) = 0$ x = 0,1,3 Between 0 and 1: $f(x) \ge g(x)$ (test a value or see graph) Between 1 and 3: $g(x) \ge f(x)$ Area = $\int_{1}^{3} ((2x^2 - 3x) - (x^3 - 2x^2))dx + \int_{0}^{1} ((x^3 - 2x^2) - (2x^2 - 3x))dx$
Given a region defined by two relations where x = some expression of y, the area can be determined by an integral in the y- direction. $Area = \int_{c}^{d} (f(y) - g(y)) dy$ Where c and d are the y-coordinates of the points of intersection and $f(y) \ge g(y)$ (graph of $f(y)$ is to the right of $g(y)$) Given a region defined by multiple boundaries, find the area. • Determine all intersecting points of the boundaries of the region • If necessary, split the region into multiple integrals	10. Find but do not evaluate an integral to represent the area enclosed by the graphs of $x = 3 - y^2$ and $x = y + 1$ Find points of intersection: $3 - y^2 = y + 1$ $y^2 + y - 2 = 0$, $(y + 2)(y - 1) = 0$, $y = -2,1$ Since $3 - y^2 \ge y + 1$ on y-interval (-2,1) Area = $\int_{-2}^{1} ((3 - y^2) - (y + 1))dy$ 11. Find but do not evaluate an integral to represent the area enclosed by: $y = 2\sqrt{x-1} - 3$, $y = -2x + 11$, and the x-axis a. Intersection of $y = 2\sqrt{x-1} - 3$ and $y = -2x + 11$ $2\sqrt{x-1} - 3 = -2x + 11$, $2\sqrt{x-1} = -2x + 14$ $\sqrt{x-1} = -x + 7$, $x - 1 = x^2 - 14x + 49$ $x^2 - 15x + 50 = 0$, $(x - 5)(x - 10) = 0$ x = 5 $(x = 10)$ is extraneous) b. Intersection of $y = 2\sqrt{x-1} - 3$ and the x-axis $0 = 2\sqrt{x-1} - 3$, $3 = 2\sqrt{x-1}$, $\frac{3}{2} = \sqrt{x-1}$, $\frac{9}{4} = x - 1$ $\frac{13}{4} = 3.25 = x$ c. Intersection of $y = -2x + 11$ and the x-axis $0 = -2x + 11$, $\frac{11}{2} = 5.5 = x$ Area = $\int_{5}^{5} (-2x + 11)dx + \int_{325}^{5} (2\sqrt{x-1} - 3)dx$